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Probability density function of turbulent velocity fluctuations in a rough-wall boundary layer
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The probability density function of single-point velocity fluctuations in turbulence is studied systematically
using Fourier coefficients in the energy-containing range. In ideal turbulence where energy-containing motions
are random and independent, the Fourier coefficients tend to Gaussian and independent of each other. Velocity
fluctuations accordingly tend to Gaussian. However, if energy-containing motions are intermittent or contami-
nated with bounded-amplitude motions such as wavy wakes, the Fourier coefficients tend to non-Gaussian and
dependent of each other. Velocity fluctuations accordingly tend to non-Gaussian. These situations are found in
our experiment of a rough-wall boundary layer.
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I. INTRODUCTION

Suppose that single-point velocity fluctuationsu(x) are
measured repeatedly in stationary turbulence over the ra
0<x,L. If the sampling interval is much greater than t
eddy turnover time scale, these measurements serve as
pendent realizations of the turbulence. Each of them is
panded into a Fourier series as

u~x!5A2

L (
n51

`

ancosS 2pnx

L D1bnsinS 2pnx

L D , ~1!

where 2pn/L5kn is the wave number. Batchelor@1# as-
sumed that the Fourier coefficientsan andbn are statistically
independent of each other and applied the central limit th
rem to their sum. This theorem ensures that the probab
density function~PDF! of a sum of many independent ran
dom variables tends to Gaussian, at least within a few s
dard deviations around the average@2,3#. It was concluded
that velocity fluctuations tend to Gaussian, being consis
with experimental and observational data of turbulence
were available at that time.

However, recent measurements revealed the presenc
velocity fluctuations that tend to non-Gaussian. Sreeniva
and Dhruva@4# obtained long data of atmospheric turbulen
at 35 m above the ground. Their data yield the flatness fa
Fu5^u4&/^u2&252.66, where the bracket^•& denotes an av-
erage. This value is different from the Gaussian valueFu
53. Noullezet al. @5# obtainedFu.2.85 in turbulent jets.
For these results, there has been no explanation.
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Therefore, although single-point velocity fluctuations a
fundamental in describing turbulence, the mechanism
determines their PDF is uncertain. We systematically stu
velocity fluctuations in a laboratory rough-wall bounda
layer, a representative turbulent flow with various applic
tions, e.g., the atmosphere near the ground. With an incre
of the distance from the wall, velocity fluctuations are fou
to change from sub-Gaussian (Fu,3) to Gaussian, and to
hyper-Gaussian (Fu.3). This behavior is discussed usin
PDFs of the Fourier coefficients and correlations amo
them.

II. CONDITION FOR GAUSSIANITY

This section serves as a summary of conditions for vel
ity fluctuations to be approximately Gaussian. It is assum
that the turbulence is not only stationary but also homo
neous in thex direction. The data length is set to b
much larger than the correlation lengthl c5* u^u(x
1dx)u(x)&uddx/^u2&. Then an average taken over the re
izations is equal to the corresponding average taken ove
x positions.

Velocity fluctuations of turbulence are dominated by Fo
rier coefficients in the energy-containing range. Since
data length is large, there is a sufficient number of Fou
coefficients for the central limit theorem to be applicab
Velocity fluctuations tend to Gaussian if the Fourier coe
cients are random and independent. This is expected for i
turbulence where energy-containing motions are random
independent. Although turbulence always contains sm
scale coherent structures, e.g., vortex tubes@6#, their contri-
bution to velocity fluctuations is as small as the energy ra
of the dissipation range to the energy-containing range.

The central limit theorem is not applicable to a sum
variables if few of them dominate over the others@2,3#. For
example, if the energy spectrumEn5^an

2&1^bn
2& is propor-

tional tokn
a with a,21, Fourier coefficients at the smalle

,
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wave numbers dominate the velocity fluctuations. They
not necessarily tend to Gaussian@7#. Nevertheless, the en
ergy spectrum is relatively flat in the usual energy-contain
range, where the power lawkn

a is not a good approximation
We previously assumed that the central limit theorem is
applicable to the sum of Fourier coefficients in any turb
lence@8#, but this assumption was wrong.

Fourier coefficients of velocity fluctuations also tend
Gaussian if turbulence is made of random and indepen
motions@8–10#. The Fourier coefficientan is obtained as

an5A2

LE0

L

u~x!cosS 2pnx

L Ddx

5A2

LS E
0

L/m

•••dx1E
L/m

2L/m

•••dx1•••

1E
(m21)L/m

L

•••dxD . ~2!

For n@1, we are able to set 1!m!n and l c!L/m. The
integrations*0

L/m
•••dx, . . . ,* (m21)L/m

L
•••dx are regarded

as random variables. Their amplitudes are the same bec
the segment sizeL/m exceeds the wavelengthL/n. They are
nearly independent because adjacent integrations depen
each other only at the ends. Thenan tends to Gaussian as
consequence of the central limit theorem. This discussio
not applicable to Fourier coefficientsan and bn for n.1.
They are nevertheless small and do not contribute to velo
fluctuations if the data lengthL is sufficiently large, becaus
of the universal trendEn→0 in the limit kn52pn/L→0 @1#.
We are able to assume safely that all the Fourier coefficie
are Gaussian.

The central limit theorem offers no information about t
tails of the PDF of a sum of variables. Only when the su
~minus its mean! has been divided by the square root of t
number of the variables, the Gaussian approximation hold
the tails@2,3#. Although statistics such as the flatness fac
mainly reflect the core of the PDF, the tails that are sign
cantly far from Gaussian could exist and affect the statist
One example is significant contamination with a bound
amplitude motion, e.g.,u(x)} sin(x), the PDF of which does
not have tails. Velocity fluctuations tend to sub-Gaussi
e.g., Fu53/2 for u(x)} sin(x) @7#. The Fourier coefficients
that correspond to the bounded-amplitude motion also t
to sub-Gaussian@11#. Another example is significan
intermittency, where velocity fluctuations tend to hype
Gaussian @12#. The Fourier coefficients also tend t
hyper-Gaussian because some of the integrat
*0

L/m
•••dx, . . . ,* (m21)L/m

L
•••dx are enhanced over the oth

ers. Since the Fourier coefficients are linear functions of
locity fluctuations, sub- and hyper-Gaussianities of the vel
ity fluctuations yield sub- and hyper-Gaussianities of
Fourier coefficients, respectively, and vice versa. We exp
that this relation could approximately exist even in the c
of mutually dependent Fourier coefficients as long as
dependence is weak.
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III. EXPERIMENT

The experiment was done in a wind tunnel of the Mete
rological Research Institute. As shown in Fig. 1, we use
coordinatesx, y, and z in the streamwise, spanwise, an
floor-normal directions. The corresponding wind velociti
areu, v, andw. We take the originx5y5z50 on the tunnel
floor at the entrance to the test section. The test section
the sizedx518 m, dy53 m, anddz52 m. A boundary
layer was made by placing blocks over the entire floor of
test section. The blocks had the sizedx56 cm, dy
521 cm, anddz511 cm. The spacings of the adjace
blocks weredx570 cm anddy580 cm. We set the incom
ing wind velocity to be 20 m s21. The boundary layer was
well developed atx*10 m.

The u andv or u andw components of the wind velocity
were measured using a hot-wire anemometer with anX-type
probe. The wires were made of tungsten, 5mm in diameter,
1.0 mm in effective length, 1.4 mm in separation, oriented
645° to the streamwise direction, and operated at the t
perature of 280 °C. The measurement positions were ax
510 m andz50.05–1.00 m. The signal was low-pass fi
tered with 24 dB/octave and sampled digitally with 16-b
resolution. Atz,0.30 m, the filtering frequency was 10 kH
and the sampling frequency was 20 kHz. Atz.0.30 m, they
were 25 kHz and 50 kHz, respectively. The length of t
signal was 83106 points atz50.11, 0.14, 0.24, 0.28, 0.40
0.50, 0.60, 0.80, and 1.00 m or 323106 points atz50.05,
0.08, 0.17, 0.20, 0.32, 0.36, 0.70, and 0.90 m. We used
frozen-eddy hypothesis of Taylor to convert temporal var
tions into spatial variations.

Figure 2 shows the mean streamwise velocityU, the root-
mean-square velocity fluctuationŝu2&1/2, ^v2&1/2, and
^w2&1/2, and the shear-stress velocity^2uw&1/2 as a function
of the heightz. The 99% thickness, i.e., the height at whic
U is 99% of its maximum valueÛ, is 0.68 m. The displace
ment thickness*0

`(12U/Û)dz is 0.17 m @13#. For refer-
ence, the averageU and the root-mean-square fluctuatio
^v2&1/2 obtained in the incoming flow atx5z51 m are
shown. The latter reflects the mechanical and electric no
which is well below the turbulence signals.

FIG. 1. Schematic representation of our experimental se
Plan and side views are shown together with coordinate axes~upper
and lower sketches, respectively!.
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Throughout the boundary layer, velocity fluctuations a
almost isotropic@Fig. 2~b!#. Although velocity fluctuations in
a smooth-wall boundary layer are anisotropic, the anisotr
is reduced over roughness@14#. The shear-stress velocity i
almost constant atz.0.14–0.40 m@Fig. 2~c!#. Below and
above this constant-stress sublayer, there are the rough
sublayer and the outer sublayer, respectively, where tu
lence is affected by the roughness or the outer laminar fl
The logarithmic law that corresponds to the constant stres
unclear in the profile of the mean streamwise velocity@Fig.
2~a!# because our constant-stress sublayer is relatively
and there is uncertainty in defining the effective origin f
the logarithmic law.

IV. RESULTS AND DISCUSSION

Figure 3~a! shows the flatness factorsFu , Fv , andFw as
a function of the heightz. Figure 3~b! shows the skewnes

FIG. 2. ~a! Mean streamwise velocityU. ~b! Root-mean-
square velocity fluctuationŝu2&1/2, ^v2&1/2, and ^w2&1/2. ~c!
Shear-stress velocitŷ2uw&1/2. The abscissa is the heightz. The
triangles denote theu component, the circles denote thev com-
ponent, and the squares denote thew component. The horizonta
dotted lines indicate the values ofU and ^v2&1/2 obtained in the
incoming flow. The arrows indicate the height of the roughn
elements and the displacement thickness. On the uppermost
we indicate the height normalized by the 99% thickness. On
right axis, we indicate the values normalized by the maximumU
value. We also indicate thez range of the constant-stress sublay
The shear-stress velocity is not available atz50.90 and 1.00 m,
where the correlation2uw is negative.
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factors Su5^u3&/^u2&3/2, Sv , and Sw . The flatness factors
are close to 3 atz&0.40 m. As the height is increased abo
z.0.40 m, the flatness factors begin to increase. They h
pronounced peaks atz.0.90 m. The skewness factors a
also significant atz*0.40 m, except for thev component
that is free from the shear of the boundary layer. Simi
results were obtained in previous works@15,16#.

We focus on thev component, which is best suited to ou
analysis. The range of flatness factor is widest. The dep
dence on the heightz is simple. At z&0.40 m, the PDF is
sub-Gaussian. Atz*0.40 m, the PDF is hyper-Gaussia
Only thev component atz.0.40 m exhibits simultaneously
the Gaussian valuesF53 andS50.

Figure 4~a! shows the energy spectrumEn for thev com-
ponent atz50.05, 0.36, and 0.70 m. Figure 4~b! shows the
flatness factor of the Fourier coefficientFn5^an

4&/^an
2&2.

Figure 4~c! shows the mode-mode correlationCnnp
(n

Þnp),

Cnnp
5

^an
2anp

2 &2^an
2&^anp

2 &

~^an
4&2^an

2&2!1/2~^anp

4 &2^anp

2 &2!1/2
, ~3!

where np corresponds to the wave numberknp
of the En

peak. These quantities were obtained by dividing the d

s
xis,
e

.

FIG. 3. ~a! Flatness factorsFu , Fv , and Fw . ~b! Skewness
factorsSu , Sv , andSw . The abscissa is the heightz. The triangles
denote theu component, the circles denote thev component, and
the squares denote thew component. The horizontal dotted line
indicate the Gaussian valuesF53 ~a! andS50 ~b!. On the upper-
most axis, we indicate the height normalized by the 99% thickn
We also indicate thez range of the constant-stress sublayer.
1-3
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into segments of 215 points. We regarded them as indepe
dent realizations of turbulence, applied the Fourier trans
mation individually to them, and calculated averages o
them at each of the wave numbers. The energy spectrum
obtained using the Welch window function. Since this a
other usual window functions were found to affect sign
cantly the flatness factor or mode-mode correlation, we w
forced to obtain them by appending the inverted sequenc
each sequence of the segments. Any method to remove
fects of discontinuity at the ends of a data segment mod
the data and thereby affects some of the statistics.
present method is not an exception but happens to hav
serious effect on the statistics of our interest.

FIG. 4. ~a! Energy spectrumEn of the v component atz
50.05, 0.36, and 0.70 m.~b! Flatness factor of the Fourier coeffi
cientFn . ~c! Mode-mode correlationCnnp

(nÞnp). The abscissa is
the wave numberkn . The horizontal dotted lines indicate th
Gaussian value of 3~b! and the noncorrelation value of 0~c!. The
arrows indicate the wave numbersknp

of the En peaks. In~b! and
~c!, we made moving averages over five adjacent wave numb
The hatched areas emphasize the sub-Gaussianity and negativ
relation of the data atz50.05 m.
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Velocity fluctuations atz50.36 m are Gaussian@Fv
53.00; Fig. 3~a!#. Throughout the wave numbers, the fla
ness factor of the Fourier coefficient is close to Gauss
@Fig. 4~b!#, and the mode-mode correlation is absent@Fig.
4~c!#. Thus the Fourier coefficients are Gaussian and in
pendent of each other. The heightz50.36 m is near the up-
per edge of the constant-stress sublayer and also nea
middle of the entire boundary layer. We consider that edd
of various sizes and strengths pass the probe randomly
independently.

Velocity fluctuations atz50.05 m are sub-Gaussian@Fv
52.51; Fig. 3~a!#. At around the peak of the energy spectru
En , the flatness factor of the Fourier coefficient is su
Gaussian@Fig. 4~b!#. This sub-Gaussianity of the Fourier co
efficients is associated with that of velocity fluctuations~Sec.
II !. Although the former is less significant than the latter, t
mode-mode correlation is negative@Fig. 4~c!#. This is also
associated with the sub-Gaussianity of velocity fluctuatio
Even if the Fourier coefficient at theEn peak has a large
amplitude, its effect to velocity fluctuations tends to
weakened by small amplitudes of the Fourier coefficients
nearby wave numbers, as compared with a noncorrela
case.

The mode-mode correlation shown in Fig. 4~c! is merely a
representative example. Similar negative correlations
found for other pairs of Fourier coefficients at around t
energy peak. It is possible to have more than two Fou
coefficients that are negatively correlated with each othe
the absolute values of the correlation coefficients are sm

The heightz50.05 m is in the roughness sublayer.
plausible explanation is that turbulence is contaminated w
bounded-amplitude motions due to wavy wakes of
roughness. The amplitudes are required to be in a boun
range because velocity fluctuations and their Fourier coe
cients are sub-Gaussian~Sec. II!. The individual motions are
required to contribute to a range of wave numbers, poss
through the presence of spatial structures, because ther
mode-mode correlations.

Velocity fluctuations atz50.70 m are hyper-Gaussia
@Fv514.82; Fig. 3~a!#. Throughout the wave numbers, th
flatness factor of the Fourier coefficient is hyper-Gauss
@Fig. 4~b!#. This is associated with the hyper-Gaussianity
velocity fluctuations~Sec. II!. The mode-mode correlation i
positive @Fig. 4~c!#. If the Fourier coefficient at theEn peak
has a large amplitude, its effect to velocity fluctuations
strengthened by large amplitudes of the Fourier coefficie
at nearby wave numbers.

The heightz50.70 m is near the outer edge of the boun
ary layer, where turbulence is intermittent@12,17#. There are
only eddies that have been ejected from the lower heig
Actually, the skewness factors of theu andw components are
negative and positive, respectively@Fig. 3~b!#. The eddies
intermittently pass the probe and enhance velocity fluct
tions. They are accordingly hyper-Gaussian. The interm
tency is also responsible for the hyper-Gaussianity of
Fourier coefficients~Sec. II!. The presence of spatial struc
tures is responsible for the presence of mode-mode corr

rs.
cor-
1-4
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tion. It should be noted that, since turbulence is not sp
filling, this intermittency is regarded as contamination of t
bulence with a laminar flow.

The hyper-Gaussianity of velocity fluctuations in the ou
sublayer has been known to be an intermittent phenome
for a long time, readily understood in the space domain@12#.
Their Fourier coefficients in the wave number domain
not so useful but have interesting properties as in the case
sub-Gaussian and Gaussian velocity fluctuations.

Figure 5 summarizes behaviors of the Fourier coefficie
as a function of the heightz: ~a! the wave numberknp

of the
peak of the energy spectrum,~b! the flatness factor of the
Fourier coefficientFn , and ~c! the mode-mode correlatio
Cnnp

(nÞnp). The latter two quantities are medians arou

knp
within 261knp

. Since statistical uncertainty is not insig

FIG. 5. ~a! Wave numberknp
of the peak of the energy spectru

of the v component.~b! Flatness factor of the Fourier coefficien
Fn . ~c! Mode-mode correlationCnnp

(nÞnp). The flatness factor
and the mode-mode correlation are medians aroundknp

within
261knp

. The abscissa is the heightz. The large circles denote dat
with 323106 points, while the small circles denote data with
3106 points. The horizontal dotted lines indicate the Gauss
value of 3~b! and the noncorrelation value of 0~c!. On the upper-
most axis, we indicate the height normalized by the 99% thickn
We also indicate thez range of the constant-stress sublayer as w
as thez ranges where velocity fluctuations are sub- and hyp
Gaussian.
03631
e
-

r
on

e
of

ts

nificant, the shorter data with 83106 points are denoted by
the smaller symbol. With an increase of the height, the p
wave number decreases because energy-containing e
become larger@18#. The behaviors of the flatness factor an
mode-mode correlation are in accordance with the beha
of velocity fluctuations. Atz&0.40 m, velocity fluctuations
are sub-Gaussian. The Fourier coefficients are sub-Gaus
and exhibit negative mode-mode correlations. Atz
*0.40 m, velocity fluctuations are hyper-Gaussian. T
Fourier coefficients are hyper-Gaussian and exhibit posi
mode-mode correlations.

V. CONCLUDING REMARKS

The PDF of single-point velocity fluctuations in turbu
lence is not universal but reflects energy-containing motio
We studied velocity fluctuations using their Fourier coef
cients in the energy-containing range. In ideal turbulen
where energy-containing motions are random and indep
dent, the Fourier coefficients tend to Gaussian and indep
dent of each other. Velocity fluctuations tend to Gaussi
This is the case at around the middle of a rough-wall bou
ary layer, where eddies of various sizes and strengths
the probe randomly and independently. However, if turb
lence is contaminated with bounded-amplitude motions s
as wavy wakes, the Fourier coefficients tend to sub-Gaus
and their amplitudes are correlated negatively. Velocity flu
tuations tend to sub-Gaussian. This is the case in the lo
part of a rough-wall boundary layer, where contaminati
with wavy wakes of the roughness is significant. If turb
lence is intermittent or contaminated with a laminar flow, t
Fourier coefficients tend to hyper-Gaussian and their am
tudes are correlated positively. Velocity fluctuations tend
hyper-Gaussian. This is the case in the upper part of a rou
wall boundary layer, where turbulence is not space filli
and eddies intermittently pass the probe.

We previously studied velocity fluctuations in grid turb
lence @8#. At small distances from the grid, turbulence
developing. There are bounded-amplitude motions due
wavy wakes of the grid. The PDF of velocity fluctuation
tends to sub-Gaussian. At intermediate distances, turbule
is fully developed. The PDF tends to Gaussian. At large d
tances, turbulence is decaying. There remain only strong
dies. They intermittently pass the probe. The PDF tends
hyper-Gaussian. These results for grid turbulence are con
tent with our present results for boundary-layer turbulenc

Sreenivasan and Dhruva@4# obtainedFu52.66 in the at-
mospheric boundary layer. The exact observational condi
is unknown to us, but the flow at the measurement posit
z535 m could be affected by wavy wakes of the grou
roughness. The observed sub-Gaussianity could be attr
able to possibly bounded amplitudes of these wakes.

Velocity fluctuations tend to sub-Gaussian in direct n
merical simulations of homogeneous, isotropic, station
turbulence@19–21#. Since the simulations were done und
forcing over narrow ranges of the smallest wave numbe
the energy spectra are steep and close to the power lawkn

a

with a,21. The observed sub-Gaussianity could be attr
utable to the forced motions that dominate the velocity flu

n

s.
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r-
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tuations@7,21# ~see also Sec. II!. Thus these numerical re
sults are not inconsistent with our experimental results wh
the energy spectrum is relatively flat in the energy-contain
range@Fig. 4~a!#. It is of interest to study such numerical da
in the same manner as in the present work.
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