PHYSICAL REVIEW E 68, 036311 (2003

Probability density function of turbulent velocity fluctuations in a rough-wall boundary layer
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The probability density function of single-point velocity fluctuations in turbulence is studied systematically
using Fourier coefficients in the energy-containing range. In ideal turbulence where energy-containing motions
are random and independent, the Fourier coefficients tend to Gaussian and independent of each other. Velocity
fluctuations accordingly tend to Gaussian. However, if energy-containing motions are intermittent or contami-
nated with bounded-amplitude motions such as wavy wakes, the Fourier coefficients tend to non-Gaussian and
dependent of each other. Velocity fluctuations accordingly tend to non-Gaussian. These situations are found in
our experiment of a rough-wall boundary layer.
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[. INTRODUCTION Therefore, although single-point velocity fluctuations are
fundamental in describing turbulence, the mechanism that
Suppose that single-point velocity fluctuationéx) are  determines their PDF is uncertain. We systematically study
measured repeatedly in stationary turbulence over the rangelocity fluctuations in a laboratory rough-wall boundary
0=x<L. If the sampling interval is much greater than thelayer, a representative turbulent flow with various applica-
eddy turnover time scale, these measurements serve as ind®ns, e.g., the atmosphere near the ground. With an increase
pendent realizations of the turbulence. Each of them is exef the distance from the wall, velocity fluctuations are found
panded into a Fourier series as to change from sub-Gaussiak (<3) to Gaussian, and to
hyper-GaussianK,>3). This behavior is discussed using
5 > PDFs of the Fourier coefficients and correlations among
mNX
u(x)= \[E nz,l ancos(T
where 27n/L=k,, is the wave number. Batchel¢d] as-

)1 (1) them.
sumed that the Fourier coefficierits andb,, are statistically This section serves as a summary of conditions for veloc-
independent of each other and applied the central limit theoity fluctuations to be approximately Gaussian. It is assumed
rem to their sum. This theorem ensures that the probabilityhat the turbulence is not only stationary but also homoge-
density function(PDP of a sum of many independent ran- neous in thex direction. The data length is set to be
dom variables tends to Gaussian, at least within a few starmuch larger than the correlation length.= J|{u(x
dard deviations around the avera@e3]. It was concluded + dx)u(x))|déx/(u?). Then an average taken over the real-
that velocity fluctuations tend to Gaussian, being consistenzations is equal to the corresponding average taken over the
with experimental and observational data of turbulence thax positions.
were available at that time. Velocity fluctuations of turbulence are dominated by Fou-
However, recent measurements revealed the presence iiér coefficients in the energy-containing range. Since the

velocity fluctuations that tend to non-Gaussian. Sreenivasadlata length is large, there is a sufficient number of Fourier
and Dhruvd 4] obtained long data of atmospheric turbulencecoefficients for the central limit theorem to be applicable.
at 35 m above the ground. Their data yield the flatness factovelocity fluctuations tend to Gaussian if the Fourier coeffi-
Fu=(u*/(u?)2=2.66, where the brackét) denotes an av- cients are random and independent. This is expected for ideal
erage. This value is different from the Gaussian vafye turbulence where energy-containing motions are random and
=3. Noullezet al. [5] obtainedF,=2.85 in turbulent jets. independent. Although turbulence always contains small-
For these results, there has been no explanation. scale coherent structures, e.g., vortex tuldstheir contri-

bution to velocity fluctuations is as small as the energy ratio

of the dissipation range to the energy-containing range.

2mNX
L

+ bnsin<

IIl. CONDITION FOR GAUSSIANITY
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wave numbers dominate the velocity fluctuations. They do y
not necessarily tend to Gaussipr]. Nevertheless, the en- t I 20 en I¢21 em
ergy spectrum is relatively flat in the usual energy-containing % I o I

We previously assumed that the central limit theorem is not
applicable to the sum of Fourier coefficients in any turbu- )
lence[8], but this assumption was wrong. mean wind 80 cm I I
Fourier coefficients of velocity fluctuations also tend to I 70cm I
Gaussian if turbulence is made of random and independent
motions[8—10]. The Fourier coefficiena, is obtained as

range, where the power laky] is not a good approximation. :
|:> I hot wire I

L@ B mhwel

2 (L 2mnx

an= L u(x)co L dx FIG. 1. Schematic representation of our experimental setup.

0 Plan and side views are shown together with coordinate @gzer
2/ rLm 2L/m and lower sketches, respectively
= —J ...dx+f coedXAF e
L\ Jo L/m
IIl. EXPERIMENT
L
+f - dx]. (2) The experiment was done in a wind tunnel of the Meteo-

(m=1)L/m rological Research Institute. As shown in Fig. 1, we use the

coordinatesx, y, and z in the streamwise, spanwise, and

For n>1, we are able to setdm<n and | ,<L/m. The floor-normal directions. The corresponding wind velocities
integrationsfb’“ cdx, L vf(mel)L/m' ..dx are regarded &€u,v, andw. We take the origik=y=2z=0 on the tunnel

as random variables. Their amplitudes are the same becaul@Cr at the entrance to the test section. The test section had
the segment size/m exceeds the wavelengthin. They are  the sizeéx=18 m, y=3 m, and6z=2 m. A boundary
nearly independent because adjacent integrations depend tyer was made by placing blocks over the entire floor of the
each other only at the ends. Thap tends to Gaussian as a test section. The blocks had the siz&=6 cm, dy
consequence of the central limit theorem. This discussion iss21 cm, and6z=11 cm. The spacings of the adjacent
not applicable to Fourier coefficients, and b, for n=1.  blocks weresx=70 cm anddy=80 cm. We set the incom-
They are nevertheless small and do not contribute to velociting wind velocity to be 20 mst. The boundary layer was
fluctuations if the data length is sufficiently large, because well developed ak=10 m.

of the universal tren&,— 0 in the limitk,=2=mn/L—0 [1]. Theu andv or u andw components of the wind velocity
We are able to assume safely that all the Fourier coefficientyere measured using a hot-wire anemometer witb-dype
are Gaussian. probe. The wires were made of tungsteny b in diameter,

The central limit theorem offers no information about the 1.0 mm in effective |ength, 1.4 mmin Separation, oriented at
tails of the PDF of a sum of variables. Only when the sum+ 45° tg the streamwise direction, and operated at the tem-

(minus its meahhas been divided by the square root of the yo ot re of 280°C. The measurement positions werg at
number of the variables, the Gaussian approximation holds éi 10 m andz=0.05-1.00 m. The signal was low-pass fil
the tails[2,3]. Although statistics such as the flatness factor, o \yith 24 dB/octave and sampled digitally with 16-bit
mainly reflect the core of the PDF, the tails that are S|gn|f|-resolution Atz<0.30 m. the filtering frequency was 10 kHz
cantly far from Gaussian could exist and affect the statistics. d th ’ i 'f ' 28 qu At 0y30 h
One example is significant contamination with a bounded?N? th€ Sampling frequency was 24 K. =0 M, hey
amplitude motion, e.gy(x)« sin(x), the PDF of which does were |25 kH;( 1""0“23" 5.0 KHz, iegriimgi% (-)rgi I%ngéh Ooz(;he
not have tails. Velocity fluctuations tend to sub-Gaussiang'%%a OW:OS 0.80 po:jntf&;z— '+ 210 points atz—0.05.
e.g., F,=3/2 for u(x)< sin() [7]. The Fourier coefficients = =5 0 81n32 (.)36moo7r0 dpg'gés atzvg end th
that correspond to the bounded-amplitude motion also tengl"=%» -1 X=X =e0e) Ko 05 and 0.90 m. We used the
to sub-Gaussian[11]. Another example is significant rozen-eddy hypothesis of Taylor to convert temporal varia-

intermittency, where velocity fluctuations tend to hyper-t'or::s. Into ;pa;]tlal v?lr]latlons. ¢ . lotltth i
Gaussian [12]. The Fourier coefficients also tend to igure 2 shows the mean streamwise velobiihe root-

H H 2\1/2 2\1/2
hyper-Gaussian because some of the integrationdSan-square velocity fluctuationgu®) '1,2<U )% and
L/m w)*4, and the shear-stress veloc{ty uw)~'< as a function

R DA ---dx are enhanced over the oth- X ) ; . .
0 ' WJ (m—1)L/m 0,
ers. Since the Fourier coefficients are linear functions of ve2f € heightz. The 99% thickness, i.e., the height at which

locity fluctuations, sub- and hyper-Gaussianities of the velocl is 99% of its maximum valu&J, is 0.68 m. The displace-

ity fluctuations yield sub- and hyper-Gaussianities of thement thicknessfy(1—U/U)dz is 0.17 m[13]. For refer-
Fourier coefficients, respectively, and vice versa. We expecatnce, the averagel and the root-mean-square fluctuation
that this relation could approximately exist even in the casév?)¥/? obtained in the incoming flow ak=z=1 m are

of mutually dependent Fourier coefficients as long as theshown. The latter reflects the mechanical and electric noise,
dependence is weak. which is well below the turbulence signals.
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0.10 1.00 FIG. 3. (a) Flatness factor$-,, F,, andF,,. (b) Skewness
height (m) factorsS,, S,, andS,,. The abscissa is the heightThe triangles

denote theu component, the circles denote thecomponent, and
the squares denote ttve component. The horizontal dotted lines
indicate the Gaussian valués=3 (a) andS=0 (b). On the upper-
most axis, we indicate the height normalized by the 99% thickness.
We also indicate the range of the constant-stress sublayer.

FIG. 2. (a) Mean streamwise velocityJ. (b) Root-mean-
square velocity fluctuationgu?)¥2, (v2)2 and (w?)¥2. (c)
Shear-stress velocity— uw)'/2. The abscissa is the heightThe
triangles denote tha component, the circles denote thecom-
ponent, and the squares denote theomponent. The horizontal
dotted lines indicate the values bf and (v?)*2 obtained in the  factors S,=(u®)/(u?)®?, S,, andS,. The flatness factors
incoming flow. The arrows indicate the height of the roughnessgre close to 3 at<=0.40 m. As the height is increased above
elements and the displacement thickness. On the uppermost axig= (.40 m, the flatness factors begin to increase. They have
we indicate the height normalized by the 99% thickness. On th‘bronounced peaks a=0.90 m. The skewness factors are
right axis, we indicate the values normalized by the maximdim also significant az=0.40 m, except for ther component
value. We also indicate therange of the constant-stress sublayer. that is free from the shear of the boundary layer. Similar
The shear-stress velocity is not availablezat0.90 and 1.00 m, results were obtained in previous worKs, 16,

where the correlation-uw is negative. We focus on the& component, which is best suited to our
Throughout the boundary layer, velocity fluctuations areanalysis. The range of flatness factor is widest. The depen-

almost isotropidFig. 2(b)]. Although velocity fluctuations in  dence on the height is simple. Atz=0.40 m, the PDF is
a smooth-wall boundary layer are anisotropic, the anisotropgub-Gaussian. Az=0.40 m, the PDF is hyper-Gaussian.
is reduced over roughne$$4]. The shear-stress velocity is Only thev component at=0.40 m exhibits simultaneously
almost constant az=0.14—0.40 m[Fig. 2(c)]. Below and the Gaussian valugs=3 andS=0.
above this constant-stress sublayer, there are the roughnessFigure 4a) shows the energy spectrusy for thev com-
sublayer and the outer sublayer, respectively, where turbysonent atz=0.05, 0.36, and 0.70 m. Figuréb} shows the

lence is affected by the roughness or the outer laminar flowyainess factor of the Fourier coefficienﬁtn:<a4>/(a2>2.
The logarithmic law that corresponds to the constant stress 5§igure 4c) shows the mode-mode correlaticnﬁ “(n
unclear in the profile of the mean streamwise velofFig. NNy
2(a)] because our constant-stress sublayer is relatively thiff Np).
and there is uncertainty in defining the effective origin for 2 0, 2
the logarithmic law. _ (ananp>_<an><anp>

P (e —(ap)®) Y an ) —(an )) Y

Figure 3a) shows the flatness factoFs,, F,, andF, as  Wheren, corresponds to the wave numbles of the E,
a function of the height. Figure 3b) shows the skewness peak. These quantities were obtained by dividing the data

)

nn

IV. RESULTS AND DISCUSSION
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T T Velocity fluctuations atz=0.36 m are GaussiafF,
=3.00; Fig. 3a)]. Throughout the wave numbers, the flat-
ness factor of the Fourier coefficient is close to Gaussian
[Fig. 4(b)], and the mode-mode correlation is absHrig.
4(c)]. Thus the Fourier coefficients are Gaussian and inde-
0.36 m pendent of each other. The height 0.36 m is near the up-

100 0.05m

energy spectrum (m3 s-2)

10-T
per edge of the constant-stress sublayer and also near the
middle of the entire boundary layer. We consider that eddies
- 670 m of various sizes and strengths pass the probe randomly and

(a) independently.

. . Velocity fluctuations az=0.05 m are sub-Gaussidfk,
=2.51; Fig. 3a)]. At around the peak of the energy spectrum
E,, the flatness factor of the Fourier coefficient is sub-
GaussianFig. 4(b)]. This sub-Gaussianity of the Fourier co-
efficients is associated with that of velocity fluctuatigSec.

II). Although the former is less significant than the latter, the
mode-mode correlation is negatiyEig. 4(c)]. This is also
associated with the sub-Gaussianity of velocity fluctuations.
Even if the Fourier coefficient at thE,, peak has a large
amplitude, its effect to velocity fluctuations tends to be
weakened by small amplitudes of the Fourier coefficients at
nearby wave numbers, as compared with a noncorrelation
T r case.

The mode-mode correlation shown in Figcyis merely a
representative example. Similar negative correlations are
found for other pairs of Fourier coefficients at around the
energy peak. It is possible to have more than two Fourier
0.00 coefficients that are negatively correlated with each other if
the absolute values of the correlation coefficients are small.

The heightz=0.05 m is in the roughness sublayer. A
plausible explanation is that turbulence is contaminated with
bounded-amplitude motions due to wavy wakes of the

) A ) ] roughness. The amplitudes are required to be in a bounded
100 101 range because velocity fluctuations and their Fourier coeffi-
wave number (rad m*1) cients are sub-Gaussi&8ec. I). The individual motions are
required to contribute to a range of wave numbers, possibly

FIG. 4. (a) Energy spectrumE, of the v component az  through the presence of spatial structures, because there are
=.0.05, 0.36, and 0.70 nib) Flatqess factor of the Fourler. coeffl- mode-mode correlations.
cientF, . () Mode-mode correlatio®y, (n#ny). The abscissals o qcity fluctuations atz=0.70 m are hyper-Gaussian
the wave numberk,. The horizontal dot'Fed lines indicate the [F,=14.82; Fig. 3a)]. Throughout the wave numbers, the
Gaussian Yalue of &) and the noncorrelation value of(@). The flatness factor of the Fourier coefficient is hyper-Gaussian
arrows indicate the wave numbd{§p of the E,, peaks. In(b) and . b his i iated with the h G S f
(c), we made moving averages over five adjacent wave numberg.':lg' 4( )] T IS.IS associated with the hyper auss'émty. °
The hatched areas emphasize the sub-Gaussianity and negative C%@_Iq(:_lty fIL!CtuatloniSec. ). The mOde_'mOde correlation is
relation of the data at=0.05 m. positive[Fig. 4(c)]. If the Fourier coefficient at thg, peak
has a large amplitude, its effect to velocity fluctuations is

into segments of 2 points. We regarded them as indepen-strengthened by large amplitudes of the Fourier coefficients
dent realizations of turbulence, applied the Fourier transfory; nearby wave numbers.

mation individually to them, and calculated averages over The heightz=0.70 m is near the outer edge of the bound-

them at each of the wave numbers. The energy spectrum was S :
obtained using the Welch window function. Since this and®”Y layer, where turbulence is intermitt¢i®,17. There are

other usual window functions were found to affect signifi- 1Y eddies that have been ejected from the lower heights.
cantly the flatness factor or mode-mode correlation, we weréctually, the skewness factors of th@ndw components are
forced to obtain them by appending the inverted sequence tgegative and positive, respectiveliig. 3b)]. The .eddles
each sequence of the segments. Any method to remove dftermittently pass the probe and enhance velocity fluctua-
fects of discontinuity at the ends of a data segment modifieions. They are accordingly hyper-Gaussian. The intermit-
the data and thereby affects some of the statistics. Ouency is also responsible for the hyper-Gaussianity of the
present method is not an exception but happens to have rfeourier coefficientgSec. I). The presence of spatial struc-
serious effect on the statistics of our interest. tures is responsible for the presence of mode-mode correla-

flatness

0.10 F (©)

0.05 F spectrum peak

0.70 m

0.00

mode-mode correlation

0.00
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height nificant, the shorter data with>810° points are denoted by
010 99% thickness 100 the smaller symbol. With an increase of the height, the peak
= —r ——— 7 wave number decreases because energy-containing eddies
E 400} (a) become largef18]. The behaviors of the flatness factor and
g 3.00 ® o . 0 . mode-mode correlation are in accordance with the behavior
g ° «®yle of velocity fluctuations. Az=0.40 m, velocity fluctuations
g 200 . .® are sub-Gaussian. The Fourier coefficients are sub-Gaussian
c o and exhibit negative mode-mode correlations. At
§ 'y =0.40 m, velocity fluctuations are hyper-Gaussian. The
< ;-gg 3 oonstant 4 o Fourier coefficients are hyper-Gaussian and exhibit positive
g P : L mode-mode correlations.
3.40 r T
(b) )
330F . V. CONCLUDING REMARKS
® 320fF o« * ] The PDF of single-point velocity fluctuations in turbu-
£ I’ lence is not universal but reflects energy-containing motions.
= 310} 1 We studied velocity fluctuations using their Fourier coeffi-
3.00 ooug® cients in the energy-containing range. In ideal turbulence
e ® ot o where energy-containing motions are random and indepen-
2.90 L L dent, the Fourier coefficients tend to Gaussian and indepen-
c T b oo ' dent _of each other. Velocity fluqtuations tend to Gaussian.
S oazf © Gaussian| Gaussian 1 This is the case at around the middle of a rough-wall bound-
‘7.5 P ary layer, where eddies of various sizes and strengths pass
g 0o8f ] the probe randomly and independently. However, if turbu-
8 ooab i ] lence is contaminated with bounded-amplitude motions such
g ) as wavy wakes, the Fourier coefficients tend to sub-Gaussian
% 0.00 p—— * and their amplitudes are correlated negatively. Velocity fluc-
£ « ° ° . 7 . * tuations tend to sub-Gaussian. This is the case in the lower
-0.04 L : part of a rough-wall boundary layer, where contamination
010 helght (m) 0.40 1.00 with wavy wakes of the roughness is significant. If turbu-

lence is intermittent or contaminated with a laminar flow, the

FIG. 5. (a) Wave numbeknp of the peak of the energy spectrum Fourier coefficients tend to hyper-Gal_JSS|an ano! their ampli-
of the v component(b) Flatness factor of the Fourier coefficient tudes are correlated positively. Velocity fluctuations tend to
Fy. (¢) Mode-mode correlatio€,, (n#ny). The flatness factor hyper-Gaussian. This is the case in the upper part of a rough-
and the mode-mode correlation are medians arokpdwithin ~ Wal boqndgry Iaygr, where turbulence is not space filling
2*1k, . The abscissa is the heightThe large circles d%note data and edd'es_ Intermlttently pass _the probe._ . .
with 3?2>< 10° points, while the small circles denote data with 8 We previously StU(_j'ed velocity ﬂuctuatpns in grid turbL.J'

X 1P points. The horizontal dotted lines indicate the Gaussiadence [8]_' At small distances from thg grid, turPUIence IS
value of 3(b) and the noncorrelation value of(). On the upper- developing. There are bounded-amplitude motions due to

most axis, we indicate the height normalized by the 99% thicknessVavy wakes of the grid. The PDF of velocity fluctuations
We also indicate the range of the constant-stress sublayer as welltends to sub-Gaussian. At intermediate distances, turbulence

as thez ranges where velocity fluctuations are sub- and hyperds fully developed. The PDF tends to Gaussian. At large dis-
Gaussian. tances, turbulence is decaying. There remain only strong ed-
) ) ) dies. They intermittently pass the probe. The PDF tends to
tion. It should be noted that, since turbulence is not spacgyper-Gaussian. These results for grid turbulence are consis-
filling, this '|nterm|tte':ncy is regarded as contamination of tur-iant with our present results for boundary-layer turbulence.
bulence with a laminar flow. _ o Sreenivasan and Dhruy4] obtainedF ,=2.66 in the at-
The hyper-Gaussianity of velocity fluctuations in the outermospheric boundary layer. The exact observational condition
sublayer has been known to be an intermittent phenomenqg ynknown to us, but the flow at the measurement position
for a long time, readily understood in the space donfal. ;- 35 m could be affected by wavy wakes of the ground
Their Fourier coefficients in the wave number domain areoghness. The observed sub-Gaussianity could be attribut-
not so useful but have interesting properties as in the cases gfe to possibly bounded amplitudes of these wakes.
sub-Gaussian and Gaussian velocity fluctuations. Velocity fluctuations tend to sub-Gaussian in direct nu-
Figure 5 summarizes behaviors of the Fourier coefficient§yerical simulations of homogeneous, isotropic, stationary
as a function of the height (a) the wave numbek, of the  trhylence[19-21. Since the simulations were done under
peak of the energy spectrurth) the flatness factor of the forcing over narrow ranges of the smallest wave numbers,
Fourier coefficiean, and (c) the mode-mode correlation the energy spectra are steep and close to the powekﬁaw
Chn, (n#n;). The latter two quantities are medians aroundwith «< —1. The observed sub-Gaussianity could be attrib-
knp within Zilknp. Since statistical uncertainty is not insig- utable to the forced motions that dominate the velocity fluc-
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tuations[7,21] (see also Sec. )l Thus these numerical re- ACKNOWLEDGMENT
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